Adiabat Theory 2
decompose_var_x_change(var_x, var_p, quant_p=np.arange(101, dtype=int), simple=True)
We can decompose the change in variable \(\chi\), conditioned on near-surface temperature percentile \(x\) into the change in the corresponding percentile of \(\chi\): \(p_x\), but accounting for how \(p_x\) changes with warming:
\(\delta \chi[x] = \delta \chi(p_x) + [\chi(p_x+\delta p_x) - \chi(p_x)] + [\delta \chi(p_x+\delta p_x) - \delta \chi(p_x)]\)
where:
- \(p_x\) is defined such that \(\chi[x] = \chi(p_x)\).
- \(\delta \chi(p_x) = \chi^{hot}(p^{cold}_x) - \chi^{cold}(p^{cold}_x)\) i.e. keep \(p_x\) constant, at its value in the colder simulation.
- \(\delta \chi(p_x)\) is the contribution due to change in the distribution of \(\chi\) with warming, neglecting change in percentile.
- \(\chi(p_x+\delta p_x) - \chi(p_x)\) is the contribution due to change in percentile, neglecting change in distribution of \(\chi\).
- \(\delta \chi(p_x+\delta p_x) - \delta \chi(p_x)\) is the non-linear contribution, influenced by both changes in the distribution and percentile of \(\chi\).
Keeping only the first two linear terms on the RHS, provides a good approximation.
This is achieved by setting simple=True
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
var_x
|
ndarray
|
|
required |
var_p
|
ndarray
|
|
required |
quant_p
|
ndarray
|
|
arange(101, dtype=int)
|
simple
|
bool
|
If |
True
|
Returns:
Name | Type | Description |
---|---|---|
var_x_change |
ndarray
|
|
var_x_change_theory |
ndarray
|
|
var_x_change_cont |
dict
|
Dictionary recording the five terms in the theory for \(\delta \chi[x]\).
The sum of all these terms should match the simulated
|
Source code in isca_tools/thesis/adiabat_theory2.py
885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 |
|
decompose_var_x_change_integrate(var_av, var_x, var_p, quant_p=np.arange(100, dtype=int), simple=True)
We can decompose the change in variable \(\chi\), conditioned on near-surface temperature percentile \(x\) into the change in the corresponding percentile of \(\chi\): \(p_x\), but accounting for how \(p_x\) changes with warming:
\(\delta \chi[x] \approx \delta \chi(p_x) + \overline{\eta}\delta p_x + \Delta \eta(p_x)\delta p_x + \delta \eta(p_x) \delta p_x\)
where:
- \(p_x\) is defined such that \(\chi[x] = \chi(p_x)\) and \(\overline{p}\) such that \(\overline{\chi} = \chi[\overline{p}]\).
- \(\eta(p_x) = \frac{\partial \chi}{\partial p}\bigg|_{p_x}\); \(\overline{\eta} = \frac{\partial \chi}{\partial p}\bigg|_{\overline{p}}\) and \(\Delta \eta(p_x) = \eta(p_x) - \overline{\eta}\).
- \(\delta \chi(p_x) = \chi^{hot}(p^{cold}_x) - \chi^{cold}(p^{cold}_x)\) i.e. keep \(p_x\) constant, at its value in the colder simulation.
The only approximation in the above is saying that \(\eta(p) + \delta \eta(p)\) is constant between
\(p=p_x\) and \(p=p_x+\delta p_x\).
Keeping only the first two terms on the RHS, also provides a good approximation.
This is achieved by setting simple=True
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
var_av
|
ndarray
|
|
required |
var_x
|
ndarray
|
|
required |
var_p
|
ndarray
|
|
required |
quant_p
|
ndarray
|
|
arange(100, dtype=int)
|
simple
|
bool
|
If |
True
|
Returns:
Name | Type | Description |
---|---|---|
var_x_change |
ndarray
|
|
var_x_change_theory |
ndarray
|
|
var_x_change_cont |
dict
|
Dictionary recording the five terms in the theory for \(\delta \Delta \chi(x)\).
The sum of all these terms should match the simulated
|
Source code in isca_tools/thesis/adiabat_theory2.py
969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 |
|
get_approx_terms(temp_surf_ref, temp_surf_quant, r_ref, r_quant, temp_ft_quant, epsilon_quant, pressure_surf, pressure_ft, epsilon_ref=None, z_approx_ref=None, simple=False, cape_form=False)
Function which returns terms quantifying the errors associated with various approximations, grouped together in
\(A\) variables that go into the derivation of the theoretical scaling factor,
\(\delta \hat{T}_s(x)/\delta \tilde{T}_s\), returned by get_scale_factor_theory
.
The exact scaling factor is given by:
For more details on the approximations, there is a Jupyter notebook that goes through each step of the derivation.
Terms in equation
- \(h^{\dagger} = h^*_{FT} - R^{\dagger}T_s - gz_s = (c_p - R^{\dagger})T_s + L_v q_s - \epsilon = \left(c_p + R^{\dagger}\right) T_{FT} + L_v q^*_{FT} + A_z\) where we used an approximate relation to replace \(z_{FT}\) in \(h^*_{FT}\).
- \(\epsilon = h_s - h^*_{FT}\), where \(h_s\) is near-surface MSE (at \(p_s\)) and \(h^*_{FT}\) is free tropospheric saturated MSE (at \(p_{FT}\)).
- \(R^{\dagger} = R\ln(p_s/p_{FT})/2\)
- \(\Delta \chi[x] = \chi[x] - \tilde{\chi}\)
- \(\chi[x]\) is the value of \(\chi\) averaged over all days where near-surface temperature, \(T_s\), is between percentile \(x-0.5\) and \(x+0.5\).
- \(\tilde{\chi}\) is the reference value of \(\chi\), which is free to be chosen.
- \(\beta_{FT1} = \frac{\partial h^{\dagger}}{\partial T_{FT}} = c_p + R^{\dagger} + L_v \alpha_{FT} q_{FT}^*\)
- \(\beta_{FT2} = T_{FT} \frac{\partial^2h^{\dagger}}{\partial T_{FT}^2} = T_{FT}\frac{d\beta_{FT1}}{d T_{FT}} = L_v \alpha_{FT} q_{FT}^*(\alpha_{FT} T_{FT} - 2)\)
- \(\beta_{s1} = \frac{\partial h^{\dagger}}{\partial T_s} = c_p - R^{\dagger} + L_v \alpha_s q_s\)
- \(\beta_{s2} = T_s \frac{\partial^2 h^{\dagger}}{\partial T_s^2} = T_s\frac{\partial \beta_{s1}}{\partial T_s} = L_v \alpha_s q_s(\alpha_s T_s - 2)\)
- \(\mu=\frac{L_v \alpha_s q_s}{\beta_{s1}}\)
- \(q = rq^*\) where \(q\) is the specific humidity, \(r\) is relative humidity and \(q^*(T, p)\) is saturation specific humidity which is a function of temperature and pressure.
- \(\alpha(T, p)\) is the clausius clapeyron parameter which is a function of temperature and pressure, such that \(\partial q^*/\partial T = \alpha q^*\).
- \(\Delta h^{\dagger}_0\) is referred to as
mse_mod_anom0
in the code, and is defined through: \(\Delta h^{\dagger}[x] = \tilde{\beta}_{s1}\left(1+\tilde{\mu}\frac{\Delta r_s[x]}{\tilde{r}_s}\right) \Delta T_s[x] + L_v \tilde{q}_s\frac{\Delta r_s[x]}{\tilde{r}_s} - \Delta \epsilon[x] + A_{s\Delta}[x]= \Delta h^{\dagger}_0[x] + A_{s\Delta}[x]\) - \(\delta \tilde{h}^{\dagger}_0\) is referred to as
mse_mod_ref_change0
in the code, and is defined through: \(\delta \tilde{h}^{\dagger} = \tilde{\beta}_{s1}\left(1+\tilde{\mu}\frac{\delta \tilde{r}_s}{\tilde{r}_s}\right)\delta \tilde{T}_s+ L_v \tilde{q}_s\frac{\delta \tilde{r}_s}{\tilde{r}_s} - \delta \tilde{\epsilon} + \tilde{A}_{s\delta}= \delta \tilde{h}^{\dagger}_0 + \tilde{A}_{s\delta}\) - \(\delta \Delta T_{FT}'[x]\) is referred to as
temp_ft_anom_change_mod
in the code, and is defined through: \(\tilde{\beta}_{FT1}\delta \Delta T_{FT}'[x] = \tilde{\beta}_{FT1} \delta T_{FT}[x] - \delta \tilde{h}^{\dagger}_0\) The idea being that \(\delta \tilde{T}_{FT} \approx \delta \tilde{h}^{\dagger}_0 / \tilde{\beta}_{FT1}\).
If cape_form=True
, \(A_{\Delta}\) will be modified, and an additional term \(A_{CAPE}[x]\) is introduced for
the equation to remain exact, given that the theoretical scaling factor \(\delta \hat{T}_s(x)/\delta \tilde{T}_s\)
is modified.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
temp_surf_ref
|
ndarray
|
|
required |
temp_surf_quant
|
ndarray
|
|
required |
r_ref
|
ndarray
|
|
required |
r_quant
|
ndarray
|
|
required |
temp_ft_quant
|
ndarray
|
|
required |
epsilon_quant
|
ndarray
|
|
required |
pressure_surf
|
float
|
Pressure at near-surface, \(p_s\), in Pa. |
required |
pressure_ft
|
float
|
Pressure at free troposphere level, \(p_{FT}\), in Pa. |
required |
epsilon_ref
|
Optional[ndarray]
|
|
None
|
z_approx_ref
|
Optional[ndarray]
|
|
None
|
simple
|
bool
|
If |
False
|
cape_form
|
bool
|
If |
False
|
Returns:
Name | Type | Description |
---|---|---|
approx_terms |
dict
|
Dictionary containing approximations associated with final scaling factor,
\(\delta T_s(x)/\delta \tilde{T}_s\) so units are K/K. Terms have been named based on what causes the
variation in \(x\). Each value in dictionary is a
|
approx |
dict
|
Approximation, \(A\), terms which arise through the derivation of the theory.
All have units of J/kg, except
|
Source code in isca_tools/thesis/adiabat_theory2.py
504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 |
|
get_cape_approx(temp_surf, r_surf, pressure_surf, pressure_ft, temp_ft=None, epsilon=None, z_approx=None)
Calculates an approximate value of CAPE using a single pressure level in the free troposphere, \(p_{FT}\):
where \(R^{\dagger} = R\ln(p_s/p_{FT})/2\) and \(T_{FT,\epsilon=0}\) is the free tropospheric temperature which would occur if \(\epsilon=0\), all else the same. I.e. this is the parcel rather than environmental temperature at \(p_{FT}\).
Computation of \(T_{FT,\epsilon=0}\) and \(T_{FT}\)
\(T_{FT}\) is exactly related to the surface through the modified MSE relation:
So only two of the three variables \(T_{FT}\), \(\epsilon\) and \(A_z\) are required. The other will be computed from this equation.
Similarly, \(T_{FT,\epsilon=0}\) will be computed from the following equation where all variables have the same value as for the \(T_{FT}\) equation:
Terms in equation
- \(h^{\dagger} = h^*_{FT} - R^{\dagger}T_s - gz_s = (c_p - R^{\dagger})T_s + L_v q_s - \epsilon = \left(c_p + R^{\dagger}\right) T_{FT} + L_v q^*_{FT} + A_z\) where we used an approximate relation to replace \(z_{FT}\) in \(h^*_{FT}\), and \(A_z\) quantifies the error in this replacement.
- \(\epsilon = h_s - h^*_{FT}\), where \(h_s\) is near-surface MSE (at \(p_s\)) and \(h^*_{FT}\) is free tropospheric saturated MSE (at \(p_{FT}\)).
- \(R^{\dagger} = R\ln(p_s/p_{FT})/2\)
- \(q = rq^*\) where \(q\) is the specific humidity, \(r\) is relative humidity and \(q^*(T, p)\) is saturation specific humidity which is a function of temperature and pressure.
- \(A_z\) quantifies the error due to approximation of geopotential height, as relating to temperature.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
temp_surf
|
Union[float, ndarray]
|
Temperature at |
required |
r_surf
|
Union[float, ndarray]
|
Relative humidity at |
required |
pressure_surf
|
float
|
Pressure at near-surface, \(p_s\), in Pa. |
required |
pressure_ft
|
float
|
Pressure at free troposphere level, \(p_{FT}\), in Pa. |
required |
temp_ft
|
Optional[Union[float, ndarray]]
|
Temperature at |
None
|
epsilon
|
Optional[Union[float, ndarray]]
|
\(\epsilon = h_s - h^*_{FT}\) If array, must be same size as |
None
|
z_approx
|
Optional[Union[float, ndarray]]
|
\(A_z\) quantifies the error due to approximation of replacing geopotential height with temperature.
If array, must be same size as |
None
|
Returns:
Name | Type | Description |
---|---|---|
cape |
Union[float, ndarray]
|
\(CAPE = R^{\dagger} (T_{FT,\epsilon=0} - T_{FT})\) in units of kJ/kg
If array, will be same size as |
temp_ft_parcel |
Union[float, ndarray]
|
\(T_{FT,\epsilon=0}\) in units of Kelvin.
If array, will be same size as |
Source code in isca_tools/thesis/adiabat_theory2.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
get_scale_factor_theory(temp_surf_ref, temp_surf_quant, r_ref, r_quant, temp_ft_quant, epsilon_quant, pressure_surf_ref, pressure_ft_ref, epsilon_ref=None, z_approx_ref=None, include_non_linear=False, cape_form=False, pressure_surf_quant=None, pressure_ft_quant=None)
Calculates the theoretical near-surface temperature change for percentile \(x\), \(\delta \hat{T}_s(x)\), relative to the reference temperature change, \(\delta \tilde{T}_s\). The theoretical scale factor is given by:
where the dimensionless \(\gamma\) parameters quantify the significance of different physical mechanisms in causing
a change in the near-surface temperature distribution. These are given by the get_sensitivity_factors
function.
The approximations which cause \(\frac{\delta \hat{T}_s(x)}{\delta \tilde{T}_s}\) to differ from the exact
scale factor are given in get_approx_terms
.
Reference Quantities
The reference quantities, \(\tilde{\chi}\) are free to be chosen by the user. For ease of interpretation, I propose the following, where \(\overline{\chi}\) is the mean value of \(\chi\) across all days:
- \(\tilde{T}_s = \overline{T_s}; \delta \tilde{T}_s = \delta \overline{T_s}\)
- \(\tilde{r}_s = \overline{r_s}; \delta \tilde{r}_s = 0\)
- \(\tilde{\epsilon} = 0; \delta \tilde{\epsilon} = 0\)
- \(\tilde{A}_z = \overline{A}_z; \delta \tilde{A}_z = 0\)
Given the choice of these four reference variables and their changes with warming, the reference free troposphere temperature, \(\tilde{T}_{FT}\), can be computed according to the definition of \(\tilde{h}^{\dagger}\):
\(\tilde{h}^{\dagger} = (c_p - R^{\dagger})\tilde{T}_s + L_v \tilde{q}_s - \tilde{\epsilon} = (c_p + R^{\dagger}) \tilde{T}_{FT} + L_v q^*(\tilde{T}_{FT}, p_{FT}) + \tilde{A}_z\)
If cape_form=True
, the reference CAPE, \(\widetilde{CAPE}\), will also be computed from these four variables
using get_cape_approx
. This will be 0 if \(\tilde{\epsilon}=0\).
Poor choice of reference quantities may cause the theoretical scale factor to be a bad approximation. If this
is the case, get_approx_terms
can be used to investigate what is causing the theory to break down.
Terms in equation
- \(h^{\dagger} = h^*_{FT} - R^{\dagger}T_s - gz_s = (c_p - R^{\dagger})T_s + L_v q_s - \epsilon = (c_p + R^{\dagger}) T_{FT} + L_v q^*_{FT} + A_z\) where we used an approximate relation to replace \(z_{FT}\) in \(h^*_{FT}\).
- \(\epsilon = h_s - h^*_{FT}\), where \(h_s\) is near-surface MSE (at \(p_s\)) and \(h^*_{FT}\) is free tropospheric saturated MSE (at \(p_{FT}\)).
- \(R^{\dagger} = R\ln(p_s/p_{FT})/2\)
- \(\Delta \chi[x] = \chi[x] - \tilde{\chi}\)
- \(\chi[x]\) is the value of \(\chi\) averaged over all days where near-surface temperature, \(T_s\), is between percentile \(x-0.5\) and \(x+0.5\).
- \(\tilde{\chi}\) is the reference value of \(\chi\), which is free to be chosen.
- \(\beta_{FT1} = \frac{\partial h^{\dagger}}{\partial T_{FT}} = c_p + R^{\dagger} + L_v \alpha_{FT} q_{FT}^*\)
- \(\beta_{FT2} = T_{FT} \frac{\partial^2h^{\dagger}}{\partial T_{FT}^2} = T_{FT}\frac{d\beta_{FT1}}{d T_{FT}} = L_v \alpha_{FT} q_{FT}^*(\alpha_{FT} T_{FT} - 2)\)
- \(\beta_{s1} = \frac{\partial h^{\dagger}}{\partial T_s} = c_p - R^{\dagger} + L_v \alpha_s q_s\)
- \(\beta_{s2} = T_s \frac{\partial^2 h^{\dagger}}{\partial T_s^2} = T_s\frac{\partial \beta_{s1}}{\partial T_s} = L_v \alpha_s q_s(\alpha_s T_s - 2)\)
- \(\mu=\frac{L_v \alpha_s q_s}{\beta_{s1}}\)
- \(q = rq^*\) where \(q\) is the specific humidity, \(r\) is relative humidity and \(q^*(T, p)\) is saturation specific humidity which is a function of temperature and pressure.
- \(\alpha(T, p)\) is the clausius clapeyron parameter which is a function of temperature and pressure, such that \(\partial q^*/\partial T = \alpha q^*\).
If cape_form=True
, will replace both \(\epsilon\) terms with a single \(CAPE\) anomaly change:
\(\gamma_{\delta T_{FT}}\frac{\delta CAPE[x]}{R^{\dagger}\delta \overline{T}_s}\).
Definition of CAPE
\(CAPE = R^{\dagger} (T_{FT,\epsilon=0} - T_{FT})\) where \(T_{FT,\epsilon=0}\) is the free tropospheric temperature which would occur if \(\epsilon=0\), all else the same. I.e. this is the parcel rather than environmental temperature at \(p_{FT}\).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
temp_surf_ref
|
ndarray
|
|
required |
temp_surf_quant
|
ndarray
|
|
required |
r_ref
|
ndarray
|
|
required |
r_quant
|
ndarray
|
|
required |
temp_ft_quant
|
ndarray
|
|
required |
epsilon_quant
|
ndarray
|
|
required |
pressure_surf_ref
|
float
|
Pressure at near-surface for reference day, \(p_s\), in Pa. |
required |
pressure_ft_ref
|
float
|
Pressure at free troposphere level for reference day, \(p_{FT}\), in Pa. |
required |
epsilon_ref
|
Optional[ndarray]
|
|
None
|
z_approx_ref
|
Optional[ndarray]
|
|
None
|
include_non_linear
|
bool
|
If |
False
|
cape_form
|
bool
|
If |
False
|
pressure_surf_quant
|
Optional[ndarray]
|
|
None
|
pressure_ft_quant
|
Optional[ndarray]
|
|
None
|
Returns:
Name | Type | Description |
---|---|---|
scale_factor |
ndarray
|
|
gamma |
dict
|
This is the dictionary output by |
info_var |
dict
|
For each
All are arrays of size |
info_cont |
dict
|
Dictionary containing |
Source code in isca_tools/thesis/adiabat_theory2.py
290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
|
get_sensitivity_factors(temp_surf_ref, r_ref, pressure_surf, pressure_ft, epsilon_ref=None, z_approx_ref=None, cape_form=False)
Calculates the dimensionless sensitivity \(\gamma\) parameters such that the theoretical scaling factor is given by:
These \(\gamma\) parameters quantify the significance of different physical mechanisms in causing a change in the near-surface temperature distribution.
Terms in equation
- \(h^{\dagger} = h^*_{FT} - R^{\dagger}T_s - gz_s = (c_p - R^{\dagger})T_s + L_v q_s - \epsilon = \left(c_p + R^{\dagger}\right) T_{FT} + L_v q^*_{FT} + A_z\) where we used an approximate relation to replace \(z_{FT}\) in \(h^*_{FT}\).
- \(\epsilon = h_s - h^*_{FT}\), where \(h_s\) is near-surface MSE (at \(p_s\)) and \(h^*_{FT}\) is free tropospheric saturated MSE (at \(p_{FT}\)).
- \(R^{\dagger} = R\ln(p_s/p_{FT})/2\)
- \(\Delta \chi[x] = \chi[x] - \tilde{\chi}\)
- \(\chi[x]\) is the value of \(\chi\) averaged over all days where near-surface temperature, \(T_s\), is between percentile \(x-0.5\) and \(x+0.5\).
- \(\tilde{\chi}\) is the reference value of \(\chi\), which is free to be chosen.
- \(\beta_{FT1} = \frac{\partial h^{\dagger}}{\partial T_{FT}} = c_p + R^{\dagger} + L_v \alpha_{FT} q_{FT}^*\)
- \(\beta_{FT2} = T_{FT} \frac{\partial^2h^{\dagger}}{\partial T_{FT}^2} = T_{FT}\frac{d\beta_{FT1}}{d T_{FT}} = L_v \alpha_{FT} q_{FT}^*(\alpha_{FT} T_{FT} - 2)\)
- \(\beta_{s1} = \frac{\partial h^{\dagger}}{\partial T_s} = c_p - R^{\dagger} + L_v \alpha_s q_s\)
- \(\beta_{s2} = T_s \frac{\partial^2 h^{\dagger}}{\partial T_s^2} = T_s\frac{\partial \beta_{s1}}{\partial T_s} = L_v \alpha_s q_s(\alpha_s T_s - 2)\)
- \(\mu=\frac{L_v \alpha_s q_s}{\beta_{s1}}\)
- \(q = rq^*\) where \(q\) is the specific humidity, \(r\) is relative humidity and \(q^*(T, p)\) is saturation specific humidity which is a function of temperature and pressure.
- \(\alpha(T, p)\) is the clausius clapeyron parameter which is a function of temperature and pressure, such that \(\partial q^*/\partial T = \alpha q^*\).
If cape_form=True
, will replace both \(\epsilon\) terms with a single \(CAPE\) change:
\(\gamma_{\delta T_{FT}}\frac{\delta CAPE[x]}{R^{\dagger}\delta \overline{T}_s}\).
Definition of CAPE
\(CAPE = R^{\dagger} (T_{FT,\epsilon=0} - T_{FT})\) where \(T_{FT,\epsilon=0}\) is the free tropospheric temperature which would occur if \(\epsilon=0\), all else the same. I.e. this is the parcel rather than environmental temperature at \(p_{FT}\).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
temp_surf_ref
|
Union[ndarray, float]
|
|
required |
r_ref
|
Union[ndarray, float]
|
|
required |
pressure_surf
|
float
|
Pressure at near-surface, \(p_s\), in Pa. |
required |
pressure_ft
|
float
|
Pressure at free troposphere level, \(p_{FT}\), in Pa. |
required |
epsilon_ref
|
Optional[Union[ndarray, float]]
|
|
None
|
z_approx_ref
|
Optional[Union[ndarray, float]]
|
|
None
|
cape_form
|
bool
|
If |
False
|
Returns:
Name | Type | Description |
---|---|---|
gamma |
dict
|
Dictionary containing sensitivity parameters. All are a single dimensionless
|
Source code in isca_tools/thesis/adiabat_theory2.py
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
|