Coefficients
fit_coefs(bled_codes, pixel_colors, genes)
Old method before Jax.
This finds the least squared solution for how the n_genes
bled_codes
can best explain each pixel_color
.
Can also find weighted least squared solution if weight
provided.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bled_codes |
np.ndarray
|
|
required |
pixel_colors |
np.ndarray
|
|
required |
genes |
np.ndarray
|
|
required |
Returns:
Type | Description |
---|---|
np.ndarray
|
|
np.ndarray
|
|
Source code in coppafish/omp/coefs.py
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
|
fit_coefs_weight(bled_codes, pixel_colors, genes, weight)
Old method before Jax.
This finds the least squared solution for how the n_genes
bled_codes
can best explain each pixel_color
.
Can also find weighted least squared solution if weight
provided.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bled_codes |
np.ndarray
|
|
required |
pixel_colors |
np.ndarray
|
|
required |
genes |
np.ndarray
|
|
required |
weight |
np.ndarray
|
|
required |
Returns:
Type | Description |
---|---|
np.ndarray
|
|
np.ndarray
|
|
Source code in coppafish/omp/coefs.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
|
get_all_coefs(pixel_colors, bled_codes, background_shift, dp_shift, dp_thresh, alpha, beta, max_genes, weight_coef_fit=False, track=False)
This performs omp on every pixel, the stopping criterion is that the dot_product_score when selecting the next gene to add exceeds dp_thresh or the number of genes added to the pixel exceeds max_genes.
Note
Background vectors are fitted first and then not updated again.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pixel_colors |
np.ndarray
|
|
required |
bled_codes |
np.ndarray
|
|
required |
background_shift |
float
|
When fitting background, this is applied to weighting of each background vector to limit boost of weak pixels. |
required |
dp_shift |
float
|
When finding |
required |
dp_thresh |
float
|
|
required |
alpha |
float
|
Used for |
required |
beta |
float
|
Used for |
required |
max_genes |
int
|
Maximum number of genes that can be added to a pixel i.e. number of iterations of OMP. |
required |
weight_coef_fit |
bool
|
If False, coefs are found through normal least squares fitting. If True, coefs are found through weighted least squares fitting using 1/sigma as the weight factor. |
False
|
track |
bool
|
If |
False
|
Returns:
Type | Description |
---|---|
Union[Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray, dict]]
|
gene_coefs - |
Union[Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray, dict]]
|
background_coefs - |
Union[Tuple[np.ndarray, np.ndarray], Tuple[np.ndarray, np.ndarray, dict]]
|
track_info - dictionary containing info about genes added at each step returned if
|
Source code in coppafish/omp/coefs.py
233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 |
|
get_best_gene(residual_pixel_colors, all_bled_codes, coefs, genes_added, norm_shift, score_thresh, alpha, background_genes, background_var)
Finds the best_gene
to add next to each pixel based on the dot product score with each bled_code
.
If best_gene[s]
is in background_genes
, already in genes_added[s]
or best_score[s] < score_thresh
,
then pass_score_thresh[s] = False
.
Note
The variance computed is based on maximum likelihood estimation - it accounts for all genes and background fit in each round/channel. The more genes added, the greater the variance so if the inverse is used as a weighting for omp fitting or choosing the next gene, the rounds/channels which already have genes in will contribute less.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
residual_pixel_colors |
np.ndarray
|
|
required |
all_bled_codes |
np.ndarray
|
|
required |
coefs |
np.ndarray
|
|
required |
genes_added |
np.array
|
|
required |
norm_shift |
float
|
shift to apply to normalisation of spot_colors to limit boost of weak spots. |
required |
score_thresh |
float
|
|
required |
alpha |
float
|
Used for |
required |
background_genes |
np.ndarray
|
|
required |
background_var |
np.array
|
|
required |
Returns:
Type | Description |
---|---|
np.ndarray
|
|
np.ndarray
|
|
np.ndarray
|
|
np.ndarray
|
|
Source code in coppafish/omp/coefs.py
168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
|
get_best_gene_base(residual_pixel_colors, all_bled_codes, norm_shift, score_thresh, inverse_var, ignore_genes)
Computes the dot_product_score
between residual_pixel_color
and each code in all_bled_codes
.
If best_score
is less than score_thresh
or if the corresponding best_gene
is in ignore_genes
,
then pass_score_thresh
will be False.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
residual_pixel_colors |
np.ndarray
|
|
required |
all_bled_codes |
np.ndarray
|
|
required |
norm_shift |
float
|
shift to apply to normalisation of spot_colors to limit boost of weak spots. |
required |
score_thresh |
float
|
|
required |
inverse_var |
np.ndarray
|
|
required |
ignore_genes |
np.ndarray
|
|
required |
Returns:
Type | Description |
---|---|
np.ndarray
|
|
np.ndarray
|
|
np.ndarray
|
|
Source code in coppafish/omp/coefs.py
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
|
get_best_gene_first_iter(residual_pixel_colors, all_bled_codes, background_coefs, norm_shift, score_thresh, alpha, beta, background_genes)
Finds the best_gene
to add next based on the dot product score with each bled_code
.
If best_gene
is in background_genes
or best_score < score_thresh
then pass_score_thresh = False
.
Different for first iteration as no actual non-zero gene coefficients to consider when computing variance
or genes that can be added which will cause pass_score_thresh
to be False
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
residual_pixel_colors |
np.ndarray
|
|
required |
all_bled_codes |
np.ndarray
|
|
required |
background_coefs |
np.ndarray
|
|
required |
norm_shift |
float
|
shift to apply to normalisation of spot_colors to limit boost of weak spots. |
required |
score_thresh |
float
|
|
required |
alpha |
float
|
Used for |
required |
beta |
float
|
Used for |
required |
background_genes |
np.ndarray
|
|
required |
Returns:
Type | Description |
---|---|
np.ndarray
|
|
np.ndarray
|
|
np.ndarray
|
|
np.ndarray
|
|
Source code in coppafish/omp/coefs.py
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
|
Optimised
fit_coefs(bled_codes, pixel_colors, genes)
This finds the least squared solution for how the n_genes_add
bled_codes
indicated by genes[s]
can best explain pixel_colors[:, s]
for each pixel s.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bled_codes |
jnp.ndarray
|
|
required |
pixel_colors |
jnp.ndarray
|
|
required |
genes |
jnp.ndarray
|
|
required |
Returns:
Type | Description |
---|---|
jnp.ndarray
|
|
jnp.ndarray
|
|
Source code in coppafish/omp/coefs_optimised.py
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
|
fit_coefs_single(bled_codes, pixel_color, genes)
This finds the least squared solution for how the n_genes_add
bled_codes
indicated by genes
can best explain pixel_color
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bled_codes |
jnp.ndarray
|
|
required |
pixel_color |
jnp.ndarray
|
|
required |
genes |
jnp.ndarray
|
|
required |
Returns:
Type | Description |
---|---|
jnp.ndarray
|
|
jnp.ndarray
|
|
Source code in coppafish/omp/coefs_optimised.py
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
|
fit_coefs_weight(bled_codes, pixel_colors, genes, weight)
This finds the weighted least squared solution for how the n_genes_add
bled_codes
indicated by genes[s]
can best explain pixel_colors[:, s]
for each pixel s. The weight
indicates which rounds/channels should
have more influence when finding the coefficients of each gene.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bled_codes |
jnp.ndarray
|
|
required |
pixel_colors |
jnp.ndarray
|
|
required |
genes |
jnp.ndarray
|
|
required |
weight |
jnp.ndarray
|
|
required |
Returns:
Type | Description |
---|---|
jnp.ndarray
|
|
jnp.ndarray
|
|
Source code in coppafish/omp/coefs_optimised.py
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 |
|
fit_coefs_weight_single(bled_codes, pixel_color, genes, weight)
This finds the weighted least squared solution for how the n_genes_add
bled_codes
indicated by genes
can best explain pixel_color
. The weight
indicates which rounds/channels should have more influence when finding
the coefficients of each gene.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
bled_codes |
jnp.ndarray
|
|
required |
pixel_color |
jnp.ndarray
|
|
required |
genes |
jnp.ndarray
|
|
required |
weight |
jnp.ndarray
|
|
required |
Returns:
Type | Description |
---|---|
jnp.ndarray
|
|
jnp.ndarray
|
|
Source code in coppafish/omp/coefs_optimised.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 |
|
get_all_coefs(pixel_colors, bled_codes, background_shift, dp_shift, dp_thresh, alpha, beta, max_genes, weight_coef_fit=False)
This performs omp on every pixel, the stopping criterion is that the dot_product_score when selecting the next gene to add exceeds dp_thresh or the number of genes added to the pixel exceeds max_genes.
Note
Background vectors are fitted first and then not updated again.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
pixel_colors |
jnp.ndarray
|
|
required |
bled_codes |
jnp.ndarray
|
|
required |
background_shift |
float
|
When fitting background, this is applied to weighting of each background vector to limit boost of weak pixels. |
required |
dp_shift |
float
|
When finding |
required |
dp_thresh |
float
|
|
required |
alpha |
float
|
Used for |
required |
beta |
float
|
Used for |
required |
max_genes |
int
|
Maximum number of genes that can be added to a pixel i.e. number of iterations of OMP. |
required |
weight_coef_fit |
bool
|
If False, coefs are found through normal least squares fitting. If True, coefs are found through weighted least squares fitting using 1/sigma as the weight factor. |
False
|
Returns:
Type | Description |
---|---|
np.ndarray
|
|
np.ndarray
|
|
Source code in coppafish/omp/coefs_optimised.py
352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
|
get_best_gene(residual_pixel_colors, all_bled_codes, coefs, genes_added, norm_shift, score_thresh, alpha, background_genes, background_var)
Finds the best_gene
to add next to each pixel based on the dot product score with each bled_code
.
If best_gene[s]
is in background_genes
, already in genes_added[s]
or best_score[s] < score_thresh
,
then pass_score_thresh[s] = False
.
Note
The variance computed is based on maximum likelihood estimation - it accounts for all genes and background fit in each round/channel. The more genes added, the greater the variance so if the inverse is used as a weighting for omp fitting or choosing the next gene, the rounds/channels which already have genes in will contribute less.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
residual_pixel_colors |
jnp.ndarray
|
|
required |
all_bled_codes |
jnp.ndarray
|
|
required |
coefs |
jnp.ndarray
|
|
required |
genes_added |
jnp.array
|
|
required |
norm_shift |
float
|
shift to apply to normalisation of spot_colors to limit boost of weak spots. |
required |
score_thresh |
float
|
|
required |
alpha |
float
|
Used for |
required |
background_genes |
jnp.ndarray
|
|
required |
background_var |
jnp.array
|
|
required |
Returns:
Type | Description |
---|---|
jnp.ndarray
|
|
jnp.ndarray
|
|
jnp.ndarray
|
|
Source code in coppafish/omp/coefs_optimised.py
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 |
|
get_best_gene_base(residual_pixel_color, all_bled_codes, norm_shift, score_thresh, inverse_var, ignore_genes)
Computes the dot_product_score
between residual_pixel_color
and each code in all_bled_codes
.
If best_score
is less than score_thresh
or if the corresponding best_gene
is in ignore_genes
,
then pass_score_thresh
will be False.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
residual_pixel_color |
jnp.ndarray
|
|
required |
all_bled_codes |
jnp.ndarray
|
|
required |
norm_shift |
float
|
shift to apply to normalisation of spot_colors to limit boost of weak spots. |
required |
score_thresh |
float
|
|
required |
inverse_var |
jnp.ndarray
|
|
required |
ignore_genes |
jnp.ndarray
|
|
required |
Returns:
Type | Description |
---|---|
int
|
|
bool
|
|
Source code in coppafish/omp/coefs_optimised.py
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 |
|
get_best_gene_first_iter(residual_pixel_colors, all_bled_codes, background_coefs, norm_shift, score_thresh, alpha, beta, background_genes)
Finds the best_gene
to add next to each pixel based on the dot product score with each bled_code
.
If best_gene[s]
is in background_genes
or best_score[s] < score_thresh
then pass_score_thresh[s] = False
.
Different for first iteration as no actual non-zero gene coefficients to consider when computing variance
or genes that can be added which will cause pass_score_thresh
to be False
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
residual_pixel_colors |
jnp.ndarray
|
|
required |
all_bled_codes |
jnp.ndarray
|
|
required |
background_coefs |
jnp.ndarray
|
|
required |
norm_shift |
float
|
shift to apply to normalisation of spot_colors to limit boost of weak spots. |
required |
score_thresh |
float
|
|
required |
alpha |
float
|
Used for |
required |
beta |
float
|
Used for |
required |
background_genes |
jnp.ndarray
|
|
required |
Returns:
Type | Description |
---|---|
jnp.ndarray
|
|
jnp.ndarray
|
|
jnp.ndarray
|
|
Source code in coppafish/omp/coefs_optimised.py
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
|
get_best_gene_first_iter_single(residual_pixel_color, all_bled_codes, background_coefs, norm_shift, score_thresh, alpha, beta, background_genes)
Finds the best_gene
to add next based on the dot product score with each bled_code
.
If best_gene
is in background_genes
or best_score < score_thresh
then pass_score_thresh = False
.
Different for first iteration as no actual non-zero gene coefficients to consider when computing variance
or genes that can be added which will cause pass_score_thresh
to be False
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
residual_pixel_color |
jnp.ndarray
|
|
required |
all_bled_codes |
jnp.ndarray
|
|
required |
background_coefs |
jnp.ndarray
|
|
required |
norm_shift |
float
|
shift to apply to normalisation of spot_colors to limit boost of weak spots. |
required |
score_thresh |
float
|
|
required |
alpha |
float
|
Used for |
required |
beta |
float
|
Used for |
required |
background_genes |
jnp.ndarray
|
|
required |
Returns:
Type | Description |
---|---|
int
|
|
bool
|
|
jnp.ndarray
|
|
Source code in coppafish/omp/coefs_optimised.py
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
|
get_best_gene_single(residual_pixel_color, all_bled_codes, coefs, genes_added, norm_shift, score_thresh, alpha, background_genes, background_var)
Finds the best_gene
to add next to each pixel based on the dot product score with each bled_code
.
If best_gene
is in background_genes
, already in genes_added
or best_score < score_thresh
,
then pass_score_thresh = False
.
Note
The variance computed is based on maximum likelihood estimation - it accounts for all genes and background fit in each round/channel. The more genes added, the greater the variance so if the inverse is used as a weighting for omp fitting or choosing the next gene, the rounds/channels which already have genes in will contribute less.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
residual_pixel_color |
jnp.ndarray
|
|
required |
all_bled_codes |
jnp.ndarray
|
|
required |
coefs |
jnp.ndarray
|
|
required |
genes_added |
jnp.array
|
|
required |
norm_shift |
float
|
shift to apply to normalisation of spot_colors to limit boost of weak spots. |
required |
score_thresh |
float
|
|
required |
alpha |
float
|
Used for |
required |
background_genes |
jnp.ndarray
|
|
required |
background_var |
jnp.array
|
|
required |
Returns:
Type | Description |
---|---|
int
|
|
bool
|
|
jnp.ndarray
|
|
Source code in coppafish/omp/coefs_optimised.py
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 |
|