Base
get_average_transform(transforms, n_matches, matches_thresh, scale_thresh, shift_thresh)
This finds all transforms which pass some thresholds and computes the average transform using them.
av_transforms[t, r, c]
is the average transform for tile t
, round r
, channel c
and has:
- Zero rotation.
- Scaling given by median for channel
c
over all tiles and rounds. I.e.median(av_transforms[:, :, c, 0, 0])
for y scaling. - shift given by median for tile
t
, roundr
over all channels. I.e.median(av_transforms[t, r, _, 4, 0])
for y shift ifdim=3
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
transforms |
np.ndarray
|
|
required |
n_matches |
np.ndarray
|
|
required |
matches_thresh |
Union[int, np.ndarray]
|
|
required |
scale_thresh |
np.ndarray
|
|
required |
shift_thresh |
np.ndarray
|
|
required |
Returns:
Type | Description |
---|---|
np.ndarray
|
|
np.ndarray
|
|
np.ndarray
|
|
np.ndarray
|
|
np.ndarray
|
|
Source code in coppafish/register/base.py
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
|
get_single_affine_transform(spot_yxz_base, spot_yxz_transform, z_scale_base, z_scale_transform, start_transform, neighb_dist_thresh, tile_centre, n_iter=100, reg_constant_scale=None, reg_constant_shift=None, reg_transform=None)
Finds the affine transform taking spot_yxz_base
to spot_yxz_transform
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
spot_yxz_base |
np.ndarray
|
Point cloud want to find the shift from. spot_yxz_base[:, 2] is the z coordinate in units of z-pixels. |
required |
spot_yxz_transform |
np.ndarray
|
Point cloud want to find the shift to. spot_yxz_transform[:, 2] is the z coordinate in units of z-pixels. |
required |
z_scale_base |
float
|
Scaling to put z coordinates in same units as yx coordinates for spot_yxz_base. |
required |
z_scale_transform |
float
|
Scaling to put z coordinates in same units as yx coordinates for spot_yxz_base. |
required |
start_transform |
np.ndarray
|
|
required |
neighb_dist_thresh |
float
|
Distance between 2 points must be less than this to be constituted a match. |
required |
tile_centre |
np.ndarray
|
int [3]. yxz coordinates of centre of image where spot_yxz found on. |
required |
n_iter |
int
|
Max number of iterations to perform of ICP. |
100
|
reg_constant_scale |
Optional[float]
|
Constant used for scaling and rotation when doing regularized least squares.
|
None
|
reg_constant_shift |
Optional[float]
|
Constant used for shift when doing regularized least squares.
|
None
|
reg_transform |
Optional[np.ndarray]
|
|
None
|
Returns:
Type | Description |
---|---|
np.ndarray
|
|
int
|
|
float
|
|
bool
|
|
Source code in coppafish/register/base.py
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
|
get_transform(yxz_base, transform_old, yxz_target, dist_thresh, yxz_target_tree=None, reg_constant_scale=30000, reg_constant_shift=9, reg_transform=None)
This finds the affine transform that transforms yxz_base
such that the distances between the neighbours
with yxz_target
are minimised.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
yxz_base |
np.ndarray
|
|
required |
transform_old |
np.ndarray
|
|
required |
yxz_target |
np.ndarray
|
|
required |
dist_thresh |
float
|
If neighbours closer than this, they are used to compute the new transform.
Typical: |
required |
yxz_target_tree |
Optional[KDTree]
|
KDTree produced from |
None
|
reg_constant_scale |
float
|
Constant used for scaling and rotation when doing regularized least squares. |
30000
|
reg_constant_shift |
float
|
Constant used for shift when doing regularized least squares. |
9
|
reg_transform |
Optional[np.ndarray]
|
|
None
|
Returns:
Type | Description |
---|---|
np.ndarray
|
|
np.ndarray
|
|
int
|
|
float
|
|
Source code in coppafish/register/base.py
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 |
|
icp(yxz_base, yxz_target, transforms_initial, n_iter, dist_thresh, matches_thresh, scale_dev_thresh, shift_dev_thresh, reg_constant_scale=None, reg_constant_shift=None)
This gets the affine transforms
from yxz_base
to yxz_target
using iterative closest point until
all iterations used or convergence.
For transforms
that have matches below matches_thresh
or are anomalous compared to av_transform
,
the transforms
are recomputed using regularized least squares to ensure they are close to the av_transform
.
If either reg_constant_rot = None
or reg_constant_shift = None
then this is not done.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
yxz_base |
np.ndarray
|
|
required |
yxz_target |
np.ndarray
|
|
required |
transforms_initial |
np.ndarray
|
|
required |
n_iter |
int
|
Max number of iterations to perform of ICP. |
required |
dist_thresh |
float
|
If neighbours closer than this, they are used to compute the new transform.
Typical: |
required |
matches_thresh |
Union[int, np.ndarray]
|
|
required |
scale_dev_thresh |
np.ndarray
|
|
required |
shift_dev_thresh |
np.ndarray
|
|
required |
reg_constant_scale |
Optional[float]
|
Constant used for scaling and rotation when doing regularized least squares.
|
None
|
reg_constant_shift |
Optional[float]
|
Constant used for shift when doing regularized least squares.
|
None
|
Returns:
Type | Description |
---|---|
np.ndarray
|
|
dict
|
|
Source code in coppafish/register/base.py
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
|
mod_median(array, ignore, axis=0)
This computes the median ignoring values indicated by ignore
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
array |
np.ndarray
|
|
required |
ignore |
np.ndarray
|
|
required |
axis |
Union[int, List[int]]
|
|
0
|
Returns:
Type | Description |
---|---|
Union[float, np.ndarray]
|
Median value without using those values indicated by |
Source code in coppafish/register/base.py
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
|
transform_from_scale_shift(scale, shift)
Gets [dim+1 x dim]
affine transform from scale for each channel and shift for each tile/round.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
scale |
np.ndarray
|
|
required |
shift |
np.ndarray
|
|
required |
Returns:
Type | Description |
---|---|
np.ndarray
|
|
Source code in coppafish/register/base.py
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
|